Unstructured Point Cloud Semantic Labeling Using Deep Segmentation Networks
نویسندگان
چکیده
In this work, we describe a new, general, and efficient method for unstructured point cloud labeling. As the question of efficiently using deep Convolutional Neural Networks (CNNs) on 3D data is still a pending issue, we propose a framework which applies CNNs on multiple 2D image views (or snapshots) of the point cloud. The approach consists in three core ideas. (i) We pick many suitable snapshots of the point cloud. We generate two types of images: a Red-Green-Blue (RGB) view and a depth composite view containing geometric features. (ii) We then perform a pixel-wise labeling of each pair of 2D snapshots using fully convolutional networks. Different architectures are tested to achieve a profitable fusion of our heterogeneous inputs. (iii) Finally, we perform fast back-projection of the label predictions in the 3D space using efficient buffering to label every 3D point. Experiments show that our method is suitable for various types of point clouds such as Lidar or photogrammetric data.
منابع مشابه
LightNet: A Lightweight 3D Convolutional Neural Network for Real-Time 3D Object Recognition
09.15 10.45 Paper Session I o Exploiting the PANORAMA Representation for Convolutional Neural Network Classification and Retrieval Konstantinos Sfikas, Theoharis Theoharis and Ioannis Pratikakis o LightNet: A Lightweight 3D Convolutional Neural Network for Real-Time 3D Object Recognition Shuaifeng Zhi, Yongxiang Liu, Xiang Li and Yulan Guo o Unstructured point cloud semantic labeling using deep...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملTangent Convolutions for Dense Prediction in 3D
We present an approach to semantic scene analysis using deep convolutional networks. Our approach is based on tangent convolutions – a new construction for convolutional networks on 3D data. In contrast to volumetric approaches, our method operates directly on surface geometry. Crucially, the construction is applicable to unstructured point clouds and other noisy real-world data. We show that t...
متن کاملLiver segmentation in color images
We describe the use of a deep learning method for semantic segmentation of the liver from color images. Our intent is to eventually embed a semantic segmentation method into a stereo-vision based navigation system for open liver surgery. Semantic segmentation of the stereo images will allow us to reconstruct a point cloud containing the liver surfaces and excluding all other non-liver structure...
متن کاملPoint-wise Convolutional Neural Network
Deep learning with 3D data such as reconstructed point clouds and CAD models has received great research interests recently. However, the capability of using point clouds with convolutional neural network has been so far not fully explored. In this paper, we present a convolutional neural network for semantic segmentation and object recognition with 3D point clouds. At the core of our network i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017